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We suggest a linear nonconforming triangular element for Maxwell’s equations and test it
in the context of the vector Helmholtz equation. The element uses discontinuous normal
fields and tangential fields with continuity at the midpoint of the element sides, an
approximation related to the Crouzeix–Raviart element for Stokes. The element is stabi-
lized using the jump of the tangential fields, giving us a free parameter to decide. We give
dispersion relations for different stability parameters and give some numerical examples,
where the results converge quadratically with the mesh size for problems with smooth
boundaries. The proposed element is free from spurious solutions and, for cavity eigen-
value problems, the eigenfrequencies that correspond to well-resolved eigenmodes are
reproduced with the correct multiplicity.

� 2010 Published by Elsevier Inc.
1. Introduction

The electric field solution to Maxwell’s equations resides in H(curl) and it requires tangential continuity. Imposing H1-
continuity on the approximation of the electric field usually leads to pollution of the spectrum, i.e. unphysical non-zero
eigenvalues that mix with the lowest physical eigenvalues. In such a situation, modes that should have zero eigenvalues
(corresponding to gradient fields) in the continuous setting have non-zero eigenvalues in the discrete setting. This has led
to the introduction of vector elements [1,2] that are tailor-made for approximation in H(curl) and they have become very
popular for numerical simulations in electromagnetics, cf. Monk [3]. For such elements of the lowest order, the degrees of
freedom are associated with the edges of the element and therefore they are often referred to as edge elements.

The triangular edge elements suffer in that the corresponding mass matrix cannot be lumped (with positive entries in the
mass matrix) unless an angle condition is fulfilled [4], or other non-standard measures are taken [5,6]. In general, the stan-
dard edge elements thus require implicit time-stepping. On the other hand, curl-conforming approximations on rectangles
and bricks do allow for mass-lumping and explicit time-stepping, cf. Cohen [7]. For example, the lowest order curl-conform-
ing approximation on rectangles and bricks can be lumped by means of trapezoidal integration, and its analogue finite dif-
ference scheme was introduced by Yee [8]. Thus, it is often referred to as the Yee scheme but it is probably more well-known
as the finite-difference time-domain (FDTD) scheme [9], which emphasizes its typical usage for electrodynamic problems.
For the purpose of boundary modelling, the Yee scheme has to be coupled to other methods. It is feasible to couple implicitly
time-stepped tetrahedrons (or triangles) with the Yee scheme in time-domain methods, cf. Degerfeldt and Rylander [10]. For
the purpose of explicit schemes on unstructured meshes, discontinuous Galerkin (DG) methods can be formulated on
simplicial meshes [11]. These have been explored in the setting of time-harmonic problems [12] and eigenvalue problems
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[13]. They do allow for mass-lumping and explicit time-stepping on unstructured simplicial meshes, cf. Hesthaven and War-
burton [14]; however, DG methods achieve mass-lumping at the cost of extra degrees of freedom at the inter-element
boundaries – a solution that becomes particularly expensive for the low-order approximations that are popular for engineer-
ing applications.

In this paper, we propose a new nonconforming element for the approximation of the curl-conforming electric field of
Maxwell’s equations in two dimensions. Our element yields a diagonal mass matrix and thus explicit time-stepping can
be used on arbitrary unstructured meshes. The element represents linear field variations exactly and it has degrees of free-
dom associated with the edges of the element, where the tangential field component is continuous at the midpoint of each
edge and the normal field component is discontinuous. Consequently, we achieve a significant reduction in the number of
degrees of freedom as compared to the corresponding DG method without sacrificing the ability to perform explicit time-
stepping. We demonstrate that our new element yields very accurate approximations on a grid of equilateral triangles. In
particular, we use this type of discretization in the homogeneous bulk of the computational domain, and revert to an
unstructured mesh of body-conforming triangles in the vicinity of curved boundaries.

In this article, we focus on the characteristic features of our new element for frequency-domain problems. Time-domain
formulations that exploit the proposed element are postponed to a companion article. Our element contains the linear curl-
conforming element [2] as a special case and, consequently, it is feasible for us to exploit techniques developed for linear
curl-conforming elements. For example, the so-called perfectly matched layer [15] is popular for unbounded problems
and there are finite element formulations in both frequency domain [16] and time domain [17]. Our proposed element is
also a good candidate for coupling the Yee scheme on rectangles to a boundary-fitted triangular mesh, where the Yee scheme
is represented by rectangular lowest-order edge elements with mass-lumping [18] and Nitsche’s method is applied at the
interface [10].
2. Problem formulation and finite element method

We consider Maxwell’s double curl eigenvalue problem in two somewhat different situations: (i) plane wave propagation
in free space for a given wave number k which gives the numerical dispersion relation x(k) of the proposed element; and (ii)
a cavity resonator that is defined by the bounded domain X with perfect electrically conducting boundary oX and outward
pointing normal n. Thus, we wish to find the electric field E and frequency x such that
r�r� E � x
c0

� �2

E ¼ 0 in X; ð1Þ
with (i) X ¼ R2 for the dispersion analysis and (ii) a bounded domain X with n � E = 0 on oX for the cavity resonator prob-
lem. Here, c0 denotes the speed of light in vacuum.

For the presentation of the new element, we focus on the cavity resonator problem and postpone further discussions on
the dispersion analysis to Section 4. For the cavity resonator problem stated in weak form, we seek
E 2 V :¼ fv 2 Hðcurl;XÞ : v � n ¼ 0 on @Xg
such that
Z
X
r� Eð Þðr � vÞdX� x

c0

� �2 Z
X

E � vdX ¼ 0 ð2Þ
for all v 2 V. Here
Hðcurl;XÞ :¼ fv : v 2 L2ðXÞ and r� v 2 L2ðXÞg:
In order to discretize this problem, we let T h denote a triangulation of X into simplices T of diameter hT, and let Eh denote the
set of edges e, of length he, in T h. We then define the following nonconforming finite element space:
Vh : ¼ v 2 ½L2ðXÞ�2 : v 2 ½P1ðTÞ�28T 2 T h; n� v is continuous at the midpoints of all interior edges;
n

and n� v ¼ 0 at the midpoints of all edges along @Xg:
We note that this space is related to the classical Crouzeix–Raviart (CR) space [19], but with edge midpoint continuity en-
forced only for the tangential component. The standard CR element is known not to converge for the Maxwell double curl
problem, cf. Brenner et al. [20] (where instead an element-wise divergence free version of the CR element was analyzed and
shown to converge; related results are given in [21] and, in particular addressing the eigenproblem, in [22]).

Fig. 1 shows the degrees of freedom for the proposed finite element. The direction of the vector field for each basis func-
tion is constant inside the element. Further, each basis function is of unity magnitude at the edge midpoint associated with
the degree of freedom and zero at the other two other edge midpoints. We express the CR basis functions as



Fig. 1. The degrees of freedom for the proposed finite element.
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u1 ¼ 1� 2y

u2 ¼ 2ðxþ yÞ � 1
u3 ¼ 1� 2x
on the unit triangle. Thus, the basis functions associated with the degrees of freedom Ei,n are given by niui for i = 1, 2 and 3,
where ni denotes the unit normal to the ith edge of the unit triangle. The corresponding basis functions associated with Ei,t

are given by z � ni ui for i = 1, 2 and 3, where z is the unit normal to the plane of the unit triangle.
Denoting the jump of the tangential component of v 2 Vh across edges by sn � vt, with sn � vt = n � v if the edge is on oX,

where n is a normal to the edge e, our finite element method is to find ðEh;x2Þ 2 Vh � R such that
ahðEh;vÞ � x
c0

� �2

ðEh;vÞ ¼ 0 8v 2 Vh; ð3Þ
where
ahðu;vÞ :¼
Z

X
ðrh � uÞðrh � vÞdXþ

X
e2Eh

Z
e

c
he

sn� utsn� vtds ð4Þ
and
ðu;vÞ :¼
Z

X
u � vdX:
Here, rh� denotes the element-wise application of the curl operator and c is a user specified penalty parameter. We note
that the tangential jumps have been added to the equation in the same manner as in a DG method in order to increase sta-
bility of our numerical scheme. Computational experience shows that this term (with c > 0) is indeed necessary; the piece-
wise H(curl;X)-norm is too weak to control the jumps (cf. also [23]). We also note that the DG scheme has two additional
terms compared to (3); the bilinear form for DG can be written
aDG
h ðu;vÞ ¼ ahðu;vÞ �

X
e2Eh

Z
e

sn� utfrh � vg þ sn� vtfrh � ugð Þds;
where {�} denotes a mean value of the indicated quantity across the edge e. These are consistency terms necessary to retain
Galerkin orthogonality, yielding a best approximation result underlying optimal convergence properties. For our approxima-
tion, these terms are zero since rh � v is piecewise constant and the mean value of sn � vt is zero for all v 2 Vh. Thus our
method is (weakly) consistent in the same sense as a standard DG method (the idea of retaining the stabilization terms
for Crouzeix–Raviart was first used in another context in [24]).
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In the theoretical framework for the analysis of DG approximations of the Maxwell eigenproblem presented by Buffa and
Perugia [25], a key ingredient in the analysis is the use of an interpolant onto the corresponding edge element space. Due to
the large size of the DG basis, the edge elements constitute a subset thereof, a fact that can be used in the analysis. One may
view our method as a way of reducing the number of unknowns in the DG method without losing the property that the edge
element basis is a subset of Vh: the linear edge element has full tangential continuity and a complete linear approximation
inside the elements, cf. [2]. This space, with two degrees of freedom per edge, constitutes a subset of Vh with its three degrees
of freedom per (interior) edge (a subset obtained as c ?1). Note that this is not the case for the standard Crouzeix–Raviart
basis with its additional mean normal continuity.

The null space of our element is identical to that of the linear edge element in the limit c ?1. For finite values of c, the
proposed element allows the tangential component of the vector field to be discontinuous except at the midpoint of each
edge in the mesh, which clearly yields a larger space than that of the linear edge element. Our formulation requires that
modes that belong to the null space of the bilinear form (4) with c > 0 satisfy two conditions: (i) element-wise application
of the curl operator is zero; and (ii) tangential continuity at element boundaries. The gradient fields of the linear edge ele-
ment clearly satisfy these two requirements and, consequently, they are part of the null space of the bilinear form (4) for
finite values of c. Numerical tests with c > 0 demonstrate that the dimension of the null space is identical to that of the linear
edge element. Thus, we conclude that the proposed element and the linear edge element have identical null spaces when
c > 0.

Some advantages of our approach compared to the linear edge element are:

� Mass-lumping is inherent. Expressed on the unit triangle shown in Fig. 1, we exploit the quadrature rule
Z
Sunit triangle

f ðx; yÞdX ’ 1
6

f
1
2
; 0

� �
þ f

1
2
;
1
2

� �
þ f 0;

1
2

� �� �
that integrates quadratic polynomials exactly and yields a diagonal mass matrix for the proposed element.

� We have only one tangential degree of freedom per edge, which fits well with Yee’s finite difference method.

Finally, we remark that an alternative implementation of the element would be to follow Burman and Hansbo [26] and
replace
Z

e

c
he

sn� utsn� vtds
by
 Z
e
c�hest � ðt � ruÞtst � ðt � rvÞtds
where t is a unit vector tangential to the edge and c* > 0 is a stabilization parameter (different from c). This gives the same
stability (cf. Lemma 9 in [26] for the basic argument) but requires only one Gauss-point per edge to integrate exactly.

3. A brief discussion on the theoretical aspects of the method

In [25] a general framework for the analysis of DG methods was presented; there it was established that two basic prop-
erties constitute necessary and sufficient conditions for a DG method to be free of spurious solutions. In order to define these
properties, we first define the sum space V(h) = V + Vh, and introduce the seminorm and norm (defined on both Vh and V(h))
jv j2VðhÞ ¼ rh � vk k2
L2ðXÞ þ

X
e2Eh

Z
e

1
he
jsn� vtj2ds;

kvk2
VðhÞ ¼ jvj

2
VðhÞ þ kkvk2

L2ðXÞ:
where k = x/c0. We also define the kernel of ah(�, �) and its orthogonal complement by
Kh :¼ fv 2 Vh : ahðv ;wÞ ¼ 0 8w 2 Vhg;
K?h :¼ fv 2 Vh : ðv ;wÞVðhÞ ¼ 0 8w 2 Khg;
where (�, �)V(h) is the scalar product corresponding to the norm k�kV(h).
The necessary and sufficient properties of [25] can now be stated as follows.

1. A discrete Friedrich’s inequality: there exists C > 0 independent of the mesh size such that
kkvk2
L2ðXÞ 6 CRe½ahðv ;vÞ� 8v 2 K?h
2. A gap property: for h small enough, there exists, for any given wh 2 K?h ,



Fig. 2.
associa
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w 2 Hðdiv0
k ; XÞ :¼ fv 2 ½L2ðXÞ�2 : r � ðkvÞ ¼ 0g;
such that
kw�whkL2ðXÞ 6 ghkwhkVðhÞ with gh ! 0 as h! 0: ð5Þ
The crucial point in the proof of these properties is the use of the Nédélec space Vc
h ¼ Vh \ V consisting of the second family

(of degree 1 in our case), see [2]; more precisely the use of an operator Pc
h : Vh ! Vc

h such that
v �Pc
hv

�� ��2
L2ðXÞ
6 C

X
e2Eh

Z
e

he sn� vtj j2ds;

kv �Pc
hvk

2
VðhÞ 6 C

X
e2Eh

Z
e

1
he

sn� vtj j2ds:
ð6Þ
The existence of an operator with these properties implies that there is a curl-conforming finite element function close to
any function in Vh, and that we can decompose v 2 Vh as v = vc + v\, where vc 2 Vc

h and v? ¼ ð1�Pc
hÞv , where v\ is under

control due to (6), see [25] for details.
Now, the existence of the operator Pc

h hinges on (a) the discontinuous space containing the Nédélec space of the same
polynomial order, and (b) an additional bound on the tangential jumps in the approximation, cf. [27, Appendix, Steps 4–
5]. We have already addressed (a) above. As for (b), the pertinent bound on the tangential jumps holds a fortiori on the Crou-
zeix–Raviart space because of the mean continuity property, and we conclude that the theory developed in [25] for fully dis-
continuous Galerkin methods (of arbitrary order) carries over to our case.

4. Numerical tests

We test the proposed element on three different problems: (i) dispersion analysis based on plane wave propagation in
free space; (ii) a cavity resonator problem with regular field solutions; and (iii) a cavity resonator problem that features a
sharp corner which supports field singularities. In the following, we evaluate the stabilization term in the bilinear form
(4) by means of trapezoidal integration.

4.1. Dispersion analysis

We use a plane wave on the form E = E0 exp[i(xt � k � r)] to compute the numerical dispersion relation on a periodic grid.
The periodic grid exploits a rhombic unit cell that is repeated in order to discretize R2. The unit cell is divided into two tri-
angles, which makes it feasible to formulate an eigenvalue problem with nine degrees of freedom given the proposed ele-
ment. Fig. 2 shows part of the discretization with the global degrees of freedom: (i) black arrows – the nine independent
Part of the periodic grid of equilateral triangles with the global degrees of freedom: (i) black arrows – the nine independent degrees of freedom
ted with the unit cell shown by the gray rhomb; and (ii) gray arrows – dependent degrees of freedom.
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degrees of freedom associated with the unit cell shown by the gray rhomb; and (ii) gray arrows – dependent degrees of free-
dom. A dependent degree of freedom (located at rd) can be represented by means of a phase shift exp[�ik � Dr] multiplied by
the corresponding independent degree of freedom (located at ri) in the unit cell, where Dr = rd � ri. We solve the eigenvalue
problem in terms of its eigenmodes and the corresponding eigenvalues x2, where the frequency x is a function of a pre-
scribed wavevector k. The analytically computed dispersion relation yields three possible solutions: x = c0k; x = 0; and
x = �c0k (here, x = 0 is associated with an electric field that can be expressed as the gradient of a scalar potential and
x = �c0k is discarded since it yields a wave that propagates in the direction opposite to k).

4.1.1. Choice of the stabilization parameter
Let k � kkmax

denote the L1-norm evaluated on the disc shaped region k 6 kmax. Fig. 3 shows the relative error
kxn �xakkmax

=kxakkmax
as a function of the parameter c for a grid of equilateral triangles characterized by the edge length

he: (i) hekmax/p = 0.3 – dashed curve with the minimum at c = 1.17; (ii) hekmax/p = 0.5 – solid curve with the minimum at
c = 1.19; and (iii) hekmax/p = 0.7 – dash-dotted curve with the minimum at c = 1.22. Here, xa is the analytical frequency
and xn is the corresponding numerical value (in addition, we performed the same type of parameter study in the L1-norm
and the optimized values for the stabilization parameter deviate about 1% or less from the values obtained with the L1-
norm).

Fig. 4 shows the pointwise relative error jxn �xaj/jxaj as a function of the wavevector k, given the optimized
c = copt = 1.19 for the region hek/p 6 0.5. It is clear that the relative error in the frequency is very low for a large region in
k-space. We also note that the relative error in the dispersion relation is proportional to (hek)2 in the domain of asymptotic
convergence, which is confined to the region hek/p / 0.2. Given this result, we find it useful to exploit a structured grid of
equilateral triangles in homogeneous parts of the computational domain and other element shapes only in the vicinity of
complicated boundaries, where we wish to have a body-conforming mesh or resolve rapid field variations due to sharp
corners.

Fig. 5 shows the relative error jxn �xaj/jxaj for a wave that propagates in the horizontal direction through the grid of
equilateral triangles shown in Fig. 2. The relative error in Fig. 5 is shown for three different values of the stabilization param-
eter: c = 0.1copt – dashed curve; c = copt – solid curve; and c = 10copt – dash-dotted curve. We notice that it is feasible to re-
duce the relative error to very low levels for wavelengths that are rather poorly resolved by the cell size, should the
parameter c be given an appropriate value for a grid of equilateral triangles.

4.1.2. Characteristic features of the proposed element
In this section, we consider a plane wave that propagates in the horizontal direction in Fig. 2. Fig. 6 shows the analytical

dispersion relation by the solid line together with the numerical dispersion relation for different choices of the stabilization
parameter: c = 0.5copt – dotted curve; c = copt – dashed curve; and c = 2copt – dash-dotted curve. Here, copt = 1.19 and this
choice is discussed in the previous section. For all wavenumbers, we note that the numerical frequency is too large for
c = 2copt and too small for c = 0.5copt. Also, we note that the numerical dispersion relation crosses the analytical dispersion
relation for the choice c = copt at hek/p � 0.42.

The unit cell of the grid shown in Fig. 2 features nine independent degrees of freedom and, consequently, the discrete
eigenvalue problem yields nine numerical frequencies for a given wave vector. Fig. 7 shows the analytical dispersion relation
Fig. 3. The relative error kxn �xakkmax
=kxakkmax

on the disc shaped region k 6 kmax as a function of the parameter c for a grid of equilateral triangles: hekmax/
p = 0.3 – dashed curve; hekmax/p = 0.5 – solid curve; and hekmax/p = 0.7 – dash-dotted curve.



Fig. 4. The relative error jxn �xaj/jxaj in per mille as a function of k for a grid of equilateral triangles of edge length he with c = 1.19.

Fig. 5. The relative error jxn �xaj/jxaj on a grid of equilateral triangles for different values of the stabilization parameter: c = 0.1copt – dashed curve;
c = copt – solid curve; and c = 10copt – dash-dotted curve. The wave propagates along the horizontal axis in the grid shown in Fig. 2 and copt = 1.19.
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(by a solid curve) together with all the numerical frequencies (dashed curves) associated with the proposed element for
c = copt on a grid of equilateral triangles. This dispersion analysis confirms that the proposed element does not suffer from
spurious modes, i.e. problems of the type that fields that vary on the scale of the grid yield frequencies in the same range as
modes that are well-resolved by the grid, cf. Paulsen and Lynch [28] (we have performed this test for the full range of prop-
agation directions and conclude that the influence on the results shown in Fig. 7 is insignificant). In the case of c > 0, four of
the branches (denoted B1–B4) correspond to conservative (gradient field) solutions with x = 0. One of these zero eigenvalues
is associated with the node of the unit cell, where the continuous linear Lagrangian basis function /i has its degree of free-
dom. The remaining three zero eigenvalues are associated with edge-bubble basis functions that coincide with the three
edges of the unit cell, where the potential is given by /i/j and the indices i and j denote the end nodes of an edge in the unit
cell. The lowest non-zero branch x(k) (denoted B5) models the physical dispersion relation. The remaining four branches
(denoted B6–B9) yield high numerical frequencies that do not mix with the physical dispersion relation B5, and therefore
can easily be identified and disregarded (if the stabilization is removed by setting c = 0, we have two zero eigenmodes asso-
ciated with each edge of the unit cell, i.e. in total seven zero branches).



Fig. 6. Normalized numerical frequency as a function of the wavenumber on a grid of equilateral triangles for different values of the stabilization
parameter: c = 0.5copt – dotted curve; c = copt – dashed curve; and c = 2copt – dash-dotted curve. The wave propagates along the horizontal axis in the grid
shown in Fig. 2, the analytical dispersion relation is shown by the solid curve and copt = 1.19.

Fig. 7. Normalized numerical frequencies shown by dashed curves as a function of the wavenumber on a grid of equilateral triangles for c = copt = 1.19. The
wave propagates along the horizontal axis in the grid shown in Fig. 2 and the analytical dispersion relation is shown by the solid curve.
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4.2. Cavity analysis

Next, we consider the eigenvalue problem (1) on a bounded region X without holes, where we use the boundary condi-
tion n � E = 0 on the boundary oX. In all the tests that follow, the proposed element reproduces the lowest eigenvalues accu-
rately with the correct multiplicity given that the corresponding eigenmodes are well-resolved. Moreover, the null space of
the r�r�-operator is preserved. Let the number of internal nodes be denoted by nin, the number of internal edges by nie

and the number of edges on the external boundary by nbe. We find that c = 0 yields a null space of dimension nin + 2nie + nbe.
When stabilization is applied to all edges on the boundary of and internal to the computational domain, the dimension of the
null space reduces to nin + nie. This result is in agreement with our analysis of the null space associated with the r�r �-
operator.

4.2.1. Introductory example
As an example, we consider a square shaped cavity of side L = p and Fig. 8 shows the two lowest eigenmodes computed by

means of the proposed element. These eigenmodes are degenerated and their corresponding numerical eigenvalues are
k1 = 1.000360 and k2 = 1.000386, which should be compared to the analytical degenerated eigenvalue k1 = k2 = 1. This



Fig. 8. The two lowest eigenmodes for a square shaped cavity. These eigenmodes are degenerated and this can be seen by rotating the right figure 90� in the
counter clockwise direction.
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demonstrates that the proposed element reproduces the lowest eigenvalues accurately with the correct multiplicity. Here,
we emphasize that the corresponding eigenmodes are well-resolved by the mesh as shown by Fig. 8.

In addition, Fig. 9 shows the numerically computed spectrum of the 10 lowest eigenmodes for the mesh shown in Fig. 8.
The analytical result is ðkL=pÞ2 ¼ n2

x þ n2
y , where nx = 0,1,2, . . . and ny = 0,1,2, . . . with the combination nx = ny = 0 excluded.

Thus, the 10 lowest eigenmodes sorted with respect to increasing eigenvalue k2 have the mode indices (nx,ny) equal to
(0,1), (1,0), (1,1), (2,0), (0,2), (2,1), (1,2), (2,2), (3,0) and (0,3).
4.2.2. Regular solution – grid with mainly equilateral triangles
Here, we assess the performance of the proposed element, which appears to be most competitive on grids of equilateral

triangles due to its low errors in the dispersion relation if an optimized value of c is used. Therefore, we use meshes of the
type shown in Fig. 10. It consists of a structured grid of equilateral triangles in the homogeneous bulk of the computational
domain in combination with a layer of unstructured triangles close to the boundary, which allows for a body-conforming
discretization. Consequently, we cannot expect strictly uniform convergence for these meshes although we use uniform
and hierarchic refinement for the equilateral triangles in the bulk. However, we note that the thickness of the layer of
unstructured elements is proportional to mesh size and it is assumed that the unstructured body-fitted mesh yields a neg-
ligible contribution to the global error for sufficiently high resolutions. For homogeneous regions, we wish to emphasize that
the main objective is to have a numerical scheme that accurately models the wave propagation. A grid of equilateral triangles
is one possible choice for such a situation. In fact, it is easier and more efficient to work on such grids due to its repeatability
Fig. 9. Spectrum of eigenfrequencies k2 plotted with respect to the eigenmode index for the 10 lowest eigenmodes.



Fig. 10. Triangulation of square cavity that consists of two regions: (i) a structured grid of equilateral triangles in the homogeneous bulk of the
computational domain; and (ii) an unstructured mesh of triangles that conform to the external boundary.
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as compared to e.g. unstructured meshes. Consequently, we choose discretizations suitable for the proposed element and
this type of discretization is shown in Fig. 10.

We compute the lowest eigenvalue for the square cavity and Fig. 11 shows its relative error for four different schemes:
ð}Þ proposed element with c = 1.19; (O) incomplete linear edge element [1] on triangles; (4) complete linear edge element
[2] on triangles; and (h) incomplete linear edge element [1] on squares with mass-lumping. Here, the solid lines show the
results for a grid of mainly equilateral triangles as shown in Fig. 10 and the dashed line indicates the corresponding results
for a structured grid of square elements. We note that the proposed element is significantly more accurate than both (i) the
complete linear edge element on triangles and (ii) the lumped incomplete edge elements on squares. Furthermore, it displays
an accuracy that is similar to the incomplete edge element on triangles. Monk [29] reported that the incomplete edge
Fig. 11. Relative error of the lowest eigenvalue of a square cavity for four different schemes: ð}Þ proposed element with c = 1.19; (O) incomplete linear edge
element on triangles; (4) complete linear edge element on triangles; and (h) incomplete linear edge element on squares with mass lumping. Here, solid
lines are used for meshes with equilateral triangles in the homogeneous bulk of the computational domain and the dashed line show results for structured
grid of squares.
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element on a uniform grid of equilateral triangles yield a leading error term in the dispersion relation that is proportional to
h4

e , which supports the rapid order of convergence displayed in Fig. 11. We also verified that all the triangular elements yield
a leading error term that is proportional to h2

e for hierarchically refined meshes of unstructured triangles. For comparative
studies that involve incomplete and complete edge elements, we refer the reader to Refs. [30,31].
4.2.3. Regular solution – unstructured mesh of triangles
Next, we compute the maximum relative error
Fig. 12.
#3; and
dmax ¼ max
m¼1;...;10

jdmj
for the 10 lowest eigenmodes, where dm denotes the relative error for the mth eigenmode. Here, we consider a square cavity
of side L and use the four unstructured meshes shown in Fig. 12. Fig. 13 shows dmax as a function of the stabilization param-
eter c for the proposed element: Mesh #1 – dotted curve; Mesh #2 – dash-dotted curve; Mesh #3 – dashed curve; and Mesh
#4 – solid curve. It is clear that the maximum relative error is low if the stabilization parameter c is chosen to be slightly
larger than unity, which agrees well with the dispersion analysis performed on an infinite grid of equilateral triangles.

In order to put these results into the context of edge elements on triangles, Table 1 shows the maximum relative error
dmax for the same eigenvalue problem solved with (i) incomplete linear edge elements and (ii) complete linear edge elements
(for comparative studies that involve incomplete and complete edge elements, we refer the reader to Refs. [30,31]). The
mode indices (nx,ny) and the corresponding values for k2 for the 10 lowest eigenmodes are given in Section 4.2.1. For a square
cavity of side L, we wish to direct the readers’ attention to the fact that 1/2 6 L/k 6 3/2 for the 10 lowest eigenmodes, where
k = 2p/k is the wavelength associated with the eigenmode. Consequently, the eigenmodes with (kL/p)2 = 9 feature 1.5 wave-
lengths along the side of the cavity and, for example, this gives less than 3 cells per wavelength for Mesh #1, which normally
yields a very large error for a method based on linear elements and this is indeed the case for the incomplete and complete
linear edge elements. Despite the very coarse resolution of the eigenmodes with (kL/p)2 = 9, the new element proposed in
this article yields a small dmax for good choices of the stabilization parameter. In fact, the proposed element shows a max-
imum relative error dmax that is smaller than the edge element results in Table 1 for substantial ranges of the stabilization
parameter: (i) 0.86 < c < 4.6 for Mesh #1; (ii) 0.64 < c < 100 for Mesh #2; (iii) 0.80 < c < 33 for Mesh #3; and (iv) 0.64 < c < 2.9
for Mesh #4. In particular, it should be clear at this point that all the choices of the stabilization parameter copt = 1.17, 1.19
and 1.22 presented in Section 4.1.1 are well within the intersection 0.86 < c < 2.9 of the four intervals associated with the
four meshes considered here. We conclude that our new element yields a lower error than the incomplete and complete
Four unstructured meshes characterized by the circumradius R: 0.121 < R < 0.189 – mesh #1; 0.070 < R < 0.116 – mesh #2; 0.055 < R < 0.097 – mesh
0.035 < R < 0.065 – mesh #4.



Fig. 13. Maximum relative error for the 10 lowest eigenvalues of a square cavity as a function of the stabilization parameter c: mesh #1 – dotted curve;
mesh #2 – dash-dotted curve; mesh #3 – dashed curve; and mesh #4 – solid curve.

Table 1
Maximum relative error dmax for the 10 lowest eigenvalues of a square cavity computed by (i) incomplete linear edge elements and (ii) complete linear edge
elements.

Discretization dmax (–)

Incomplete Complete

Mesh #1 0.19 2.27
Mesh #2 0.11 0.97
Mesh #3 0.03 0.58
Mesh #4 0.02 0.28
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linear edge elements for reasonable choices of the stabilization parameter, when compared with respect to the mesh size.
Clearly, our element requires more degrees of freedom as compared to the incomplete and complete edge elements, and this
issue is discussed in previous sections of this article. For larger values of the stabilization parameter in the range 10 < c < 100,
the proposed element yields a maximum relative error dmax that is comparable to the incomplete linear edge elements.
4.2.4. Singular solution
Finally, we test the proposed element on an eigenvalue problem that features a sharp corner that supports a field singu-

larity. Fig. 14 shows the L-shaped computational domain, where we again use the boundary condition n � E = 0. In particular,
we emphasize that the proposed element does not show any signs of generating spurious modes despite the presence of a
singularity, and that the multiplicity of the lowest eigenvalue is correct. Here, we use a reference solution with six accurate
digits computed by means of adaptive mesh refinement for quadratic Lagrangian shape functions for the magnetic field
aligned with z, i.e. the corresponding scalar Helmholtz equation eigenvalue problem for the magnetic field.

Fig. 15 shows the relative error of the lowest eigenfrequency as a function of the number of degrees of freedom for a uni-
formly refined mesh of right-angled triangles: ð}Þ proposed element with c = copt = 1.19 shown by the dashed line and
c = 10copt shown by the solid line; (O) incomplete linear edge element [1] on triangles; and (4) complete linear edge element
[2] on triangles. It is clear that the relative error scales as N�2/3 / h4/3 in the asymptotic region of convergence. This is ex-
pected [32] for a PEC corner that subtends the angle a = p/2, where the electric field in the vicinity of the corner scales as
r�1 + p/(2p � a) with respect to the distance r to the corner. For the lowest eigenmode, the main contribution to the error in
the eigenvalue stems from the field singularity at the sharp corner and we notice that our element with c = copt yields results
that are considerably more accurate than the incomplete linear edge element, when compared in terms of the number of
degrees of freedom. It is well-known that the field behavior close to sharp corners is modeled well by complete linear edge
elements [31], which is confirmed by the results shown in Fig. 15. It is interesting to notice that for the element proposed in
this article, we achieve results that are quite similar to the complete linear edge elements when we use a larger stabilization
parameter c = 10copt. We attribute this to the ability of the proposed element to represent linear field variations exactly,
which is useful in the immediate vicinity of the singularity. These results suggest that larger values for the stabilization
parameter may be useful in the vicinity of singularities.



Fig. 15. Relative error for the lowest eigenvalue as a function of the number of degrees of freedom N / 1/h2 for the L-shaped domain shown in Fig. 14: ð}Þ
proposed element with c = copt = 1.19 shown by the dashed line and c = 10copt shown by the solid line; (O) incomplete linear edge element; and (4)
complete linear edge element.

Fig. 14. Discretization of the L-shaped domain.
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5. Conclusion

We have proposed a linear nonconforming finite element for Maxwell’s equations formulated in two space dimensions.
The element shape functions have degrees of freedom associated with the midpoints of the edges of the element. The tan-
gential field at the midpoint of each edge is continuous, while the normal component is allowed to be discontinuous, yielding
an approximation related to the Crouziex–Raviart element for Stokes. Our formulation features a parameter c that stabilizes
the tangential continuity at element edges, which allows for tuning aimed at improving the accuracy of the method.

We conclude that the proposed element yields a discretization error that is proportional to the square of the mesh size for
problems with smooth boundaries, which is expected since it can model linear field variations exactly. A numerical disper-
sion analysis on a periodic grid shows that the proposed element yields second order convergence towards the analytical
dispersion relation. For the case with stabilization, we find four branches with x(k) = 0 that correspond to modes with an
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irrotational electric field that can be expressed as the gradient of a scalar potential: (i) one linear Lagrangian basis function /i

associated with the node of the unit cell; and (ii) three edge-bubble basis functions /i/j associated with the three edges of
the unit cell (the case without stabilization yields three additional branches with x(k) = 0). The lowest non-zero branch x(k)
corresponds to the physical dispersion relation and it shows a relative error that is proportional to (hTk)2 in the asymptotic
region of convergence, where hT denotes the maximum edge length of the mesh. The remaining non-zero branches yield very
large values for x(k), which makes them easy to identify and disregard. We find that it is feasible to optimize the stabiliza-
tion parameter c on a periodic grid of equilateral triangles in order to achieve very low errors in the dispersion relation for
large regions in k-space.

Eigenvalue analysis of a square shaped cavity reinforces the convergence properties found in the dispersion analysis. We
emphasize that the proposed element does not suffer from spurious solutions and that it reproduces the well-resolved eigen-
values with the correct multiplicity, also for problems where the field solution is singular. Finally, we conclude that the pro-
posed element allows for explicit time-stepping and yields accurate and robust results. These characteristic features make
our element very suitable for computationally challenging electromagnetic field problems that feature complex geometry,
e.g. large conformal array antennas.
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